Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Virol ; 97(4): e0014423, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2297692

ABSTRACT

2019 coronavirus disease (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to respiratory illness, COVID-19 patients exhibit neurological symptoms lasting from weeks to months (long COVID). It is unclear whether these neurological manifestations are due to an infection of brain cells. We found that a small fraction of human induced pluripotent stem cell (iPSC)-derived neurons, but not astrocytes, were naturally susceptible to SARS-CoV-2. Based on the inhibitory effect of blocking antibodies, the infection seemed to depend on the receptor angiotensin-converting enzyme 2 (ACE2), despite very low levels of its expression in neurons. The presence of double-stranded RNA in the cytoplasm (the hallmark of viral replication), abundant synthesis of viral late genes localized throughout infected cells, and an increase in the level of viral RNA in the culture medium (viral release) within the first 48 h of infection suggested that the infection was productive. Productive entry of SARS-CoV-2 requires the fusion of the viral and cellular membranes, which results in the delivery of the viral genome into the cytoplasm of the target cell. The fusion is triggered by proteolytic cleavage of the viral surface spike protein, which can occur at the plasma membrane or from endosomes or lysosomes. We found that SARS-CoV-2 infection of human neurons was insensitive to nafamostat and camostat, which inhibit cellular serine proteases, including transmembrane serine protease 2 (TMPRSS2). Inhibition of cathepsin L also did not significantly block infection. In contrast, the neuronal infection was blocked by apilimod, an inhibitor of phosphatidyl-inositol 5 kinase (PIK5K), which regulates early to late endosome maturation. IMPORTANCE COVID-19 is a disease caused by the coronavirus SARS-CoV-2. Millions of patients display neurological symptoms, including headache, impairment of memory, seizures, and encephalopathy, as well as anatomical abnormalities, such as changes in brain morphology. SARS-CoV-2 infection of the human brain has been documented, but it is unclear whether the observed neurological symptoms are linked to direct brain infection. The mechanism of virus entry into neurons has also not been characterized. Here, we investigated SARS-CoV-2 infection by using a human iPSC-derived neural cell model and found that a small fraction of cortical-like neurons was naturally susceptible to infection. The productive infection was ACE2 dependent and TMPRSS2 independent. We also found that the virus used the late endosomal and lysosomal pathway for cell entry and that the infection could be blocked by apilimod, an inhibitor of cellular PIK5K.


Subject(s)
COVID-19 , Induced Pluripotent Stem Cells , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , COVID-19/physiopathology , Endosomes/metabolism , Endosomes/virology , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Neurons/virology , Post-Acute COVID-19 Syndrome/physiopathology , Post-Acute COVID-19 Syndrome/virology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Phosphotransferases/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Astrocytes/virology , Cells, Cultured
2.
J Virol ; 97(4): e0021023, 2023 04 27.
Article in English | MEDLINE | ID: covidwho-2254654

ABSTRACT

Porcine enteric alphacoronavirus (PEAV) is a new bat HKU2-like porcine coronavirus, and its endemic outbreak has caused severe economic losses to the pig industry. Its broad cellular tropism suggests a potential risk of cross-species transmission. A limited understanding of PEAV entry mechanisms may hinder a rapid response to potential outbreaks. This study analyzed PEAV entry events using chemical inhibitors, RNA interference, and dominant-negative mutants. PEAV entry into Vero cells depended on three endocytic pathways: caveolae, clathrin, and macropinocytosis. Endocytosis requires dynamin, cholesterol, and a low pH. Rab5, Rab7, and Rab9 GTPases (but not Rab11) regulate PEAV endocytosis. PEAV particles colocalize with EEA1, Rab5, Rab7, Rab9, and Lamp-1, suggesting that PEAV translocates into early endosomes after internalization, and Rab5, Rab7, and Rab9 regulate trafficking to lysosomes before viral genome release. PEAV enters porcine intestinal cells (IPI-2I) through the same endocytic pathway, suggesting that PEAV may enter various cells through multiple endocytic pathways. This study provides new insights into the PEAV life cycle. IMPORTANCE Emerging and reemerging coronaviruses cause severe human and animal epidemics worldwide. PEAV is the first bat-like coronavirus to cause infection in domestic animals. However, the PEAV entry mechanism into host cells remains unknown. This study demonstrates that PEAV enters into Vero or IPI-2I cells through caveola/clathrin-mediated endocytosis and macropinocytosis, which does not require a specific receptor. Subsequently, Rab5, Rab7, and Rab9 regulate PEAV trafficking from early endosomes to lysosomes, which is pH dependent. The results advance our understanding of the disease and help to develop potential new drug targets against PEAV.


Subject(s)
Alphacoronavirus , Caveolae , Clathrin , Pinocytosis , Virus Internalization , rab GTP-Binding Proteins , Alphacoronavirus/physiology , rab GTP-Binding Proteins/metabolism , Endosomes/metabolism , Coronavirus Infections/metabolism , Hydrogen-Ion Concentration , Dynamins/metabolism , Caveolae/metabolism , Cholesterol/metabolism , Clathrin/metabolism , Pinocytosis/physiology , Vero Cells , Chlorocebus aethiops , Animals
3.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2272293

ABSTRACT

SARS-CoV-2 is responsible for the COVID-19 pandemic. The structure of SARS-CoV-2 and most of its proteins of have been deciphered. SARS-CoV-2 enters cells through the endocytic pathway and perforates the endosomes' membranes, and its (+) RNA appears in the cytosol. Then, SARS-CoV-2 starts to use the protein machines of host cells and their membranes for its biogenesis. SARS-CoV-2 generates a replication organelle in the reticulo-vesicular network of the zippered endoplasmic reticulum and double membrane vesicles. Then, viral proteins start to oligomerize and are subjected to budding within the ER exit sites, and its virions are passed through the Golgi complex, where the proteins are subjected to glycosylation and appear in post-Golgi carriers. After their fusion with the plasma membrane, glycosylated virions are secreted into the lumen of airways or (seemingly rarely) into the space between epithelial cells. This review focuses on the biology of SARS-CoV-2's interactions with cells and its transport within cells. Our analysis revealed a significant number of unclear points related to intracellular transport in SARS-CoV-2-infected cells.


Subject(s)
COVID-19 , Humans , COVID-19/metabolism , SARS-CoV-2 , Pandemics , Biological Transport , Endosomes/metabolism
4.
Elife ; 122023 01 25.
Article in English | MEDLINE | ID: covidwho-2217495

ABSTRACT

The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as viroporins. Here, we show that neither SARS-CoV-2 nor SARS-CoV-1 Orf3a form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a positively charged aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a's ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/metabolism , Endosomes/metabolism , Ion Channels/metabolism
5.
PLoS Pathog ; 18(7): e1010736, 2022 07.
Article in English | MEDLINE | ID: covidwho-1951573

ABSTRACT

Intracellular pathogens cause membrane distortion and damage as they enter host cells. Cells perceive these membrane alterations as danger signals and respond by activating autophagy. This response has primarily been studied during bacterial invasion, and only rarely in viral infections. Here, we investigate the cellular response to membrane damage during adenoviral entry. Adenoviruses and their vector derivatives, that are an important vaccine platform against SARS-CoV-2, enter the host cell by endocytosis followed by lysis of the endosomal membrane. We previously showed that cells mount a locally confined autophagy response at the site of endosomal membrane lysis. Here we describe the mechanism of autophagy induction: endosomal membrane damage activates the kinase TBK1 that accumulates in its phosphorylated form at the penetration site. Activation and recruitment of TBK1 require detection of membrane damage by galectin 8 but occur independently of classical autophagy receptors or functional autophagy. Instead, TBK1 itself promotes subsequent autophagy that adenoviruses need to take control of. Deletion of TBK1 reduces LC3 lipidation during adenovirus infection and restores the infectivity of an adenovirus mutant that is restricted by autophagy. By comparing adenovirus-induced membrane damage to sterile lysosomal damage, we implicate TBK1 in the response to a broader range of types of membrane damage. Our study thus highlights an important role for TBK1 in the cellular response to adenoviral endosome penetration and places TBK1 early in the pathway leading to autophagy in response to membrane damage.


Subject(s)
Adenoviridae Infections , Autophagy , Endosomes , Protein Serine-Threonine Kinases , Adenoviridae/metabolism , Adenoviridae Infections/metabolism , Endosomes/metabolism , Galectins/metabolism , Humans , Protein Serine-Threonine Kinases/genetics
6.
Elife ; 112022 05 19.
Article in English | MEDLINE | ID: covidwho-1939370

ABSTRACT

The phagocytosis and destruction of pathogens in lysosomes constitute central elements of innate immune defense. Here, we show that Brucella, the causative agent of brucellosis, the most prevalent bacterial zoonosis globally, subverts this immune defense pathway by activating regulated IRE1α-dependent decay (RIDD) of Bloc1s1 mRNA encoding BLOS1, a protein that promotes endosome-lysosome fusion. RIDD-deficient cells and mice harboring a RIDD-incompetent variant of IRE1α were resistant to infection. Inactivation of the Bloc1s1 gene impaired the ability to assemble BLOC-1-related complex (BORC), resulting in differential recruitment of BORC-related lysosome trafficking components, perinuclear trafficking of Brucella-containing vacuoles (BCVs), and enhanced susceptibility to infection. The RIDD-resistant Bloc1s1 variant maintains the integrity of BORC and a higher-level association of BORC-related components that promote centrifugal lysosome trafficking, resulting in enhanced BCV peripheral trafficking and lysosomal destruction, and resistance to infection. These findings demonstrate that host RIDD activity on BLOS1 regulates Brucella intracellular parasitism by disrupting BORC-directed lysosomal trafficking. Notably, coronavirus murine hepatitis virus also subverted the RIDD-BLOS1 axis to promote intracellular replication. Our work establishes BLOS1 as a novel immune defense factor whose activity is hijacked by diverse pathogens.


Subject(s)
Brucella , Brucellosis , Animals , Brucellosis/metabolism , Brucellosis/microbiology , Endoribonucleases/metabolism , Endosomes/metabolism , Mice , Protein Serine-Threonine Kinases
7.
BMC Res Notes ; 15(1): 252, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1938343

ABSTRACT

OBJECTIVE: SARS CoV-2, the etiologic agent of coronavirus disease-2019 (COVID-19) is well-known to use ACE2 to begin internalization. Some viruses enter the host cell through the endocytosis process and involve some endocytosis proteins, such as the Rab family. However, the relationship between SARS CoV-2 infection with endocytic mRNA RAB5, RAB7, and RAB11B is unknown. This study aims to compare the expression of RAB5, RAB7, and RAB11B between positive and negative COVID-19 patient groups. RESULTS: Both viral and human epithelial RNA Isolation and RT-PCR were performed from 249 samples. The genes expression was analysed using appropriate statistical tests. We found the Median (inter-quartile range/IQR) of RAB5, RAB7, and RAB11B expression among the COVID-19 patient group was 2.99 (1.88), 0.17 (0.47), 0.47 (1.49), and 1.60 (2.88), 1.05 (2.49), 1.10 (3.96) among control group respectively. We proceeded with Mann Whitney U Test and found that RAB5 expression was significantly increased (P < 0.001), and RAB7 and RAB11B expression was significantly decreased (P < 0.001 and P = 0.036) in the COVID-19 patient group compared to the control group. This first report showed significant differences in RAB5, RAB7, and RAB11B exist between COVID-19 positive and negative patients.


Subject(s)
COVID-19 , rab5 GTP-Binding Proteins , COVID-19/genetics , Endosomes/metabolism , Gene Expression , Humans , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
8.
Antimicrob Agents Chemother ; 66(7): e0043922, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-1891730

ABSTRACT

An essential step in the infection life cycle of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the proteolytic activation of the viral spike (S) protein, which enables membrane fusion and entry into the host cell. Two distinct classes of host proteases have been implicated in the S protein activation step: cell-surface serine proteases, such as the cell-surface transmembrane protease, serine 2 (TMPRSS2), and endosomal cathepsins, leading to entry through either the cell-surface route or the endosomal route, respectively. In cells expressing TMPRSS2, inhibiting endosomal proteases using nonspecific cathepsin inhibitors such as E64d or lysosomotropic compounds such as hydroxychloroquine fails to prevent viral entry, suggesting that the endosomal route of entry is unimportant; however, mechanism-based toxicities and poor efficacy of these compounds confound our understanding of the importance of the endosomal route of entry. Here, to identify better pharmacological agents to elucidate the role of the endosomal route of entry, we profiled a panel of molecules identified through a high-throughput screen that inhibit endosomal pH and/or maturation through different mechanisms. Among the three distinct classes of inhibitors, we found that inhibiting vacuolar-ATPase using the macrolide bafilomycin A1 was the only agent able to potently block viral entry without associated cellular toxicity. Using both pseudotyped and authentic virus, we showed that bafilomycin A1 inhibits SARS-CoV-2 infection both in the absence and presence of TMPRSS2. Moreover, synergy was observed upon combining bafilomycin A1 with Camostat, a TMPRSS2 inhibitor, in neutralizing SARS-CoV-2 entry into TMPRSS2-expressing cells. Overall, this study highlights the importance of the endosomal route of entry for SARS-CoV-2 and provides a rationale for the generation of successful intervention strategies against this virus that combine inhibitors of both entry pathways.


Subject(s)
COVID-19 Drug Treatment , Vacuolar Proton-Translocating ATPases , Endosomes/metabolism , Humans , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
9.
Nucleic Acid Ther ; 32(5): 361-368, 2022 10.
Article in English | MEDLINE | ID: covidwho-1864945

ABSTRACT

RNA therapeutics, including siRNAs, antisense oligonucleotides, and other oligonucleotides, have great potential to selectively treat a multitude of human diseases, from cancer to COVID to Parkinson's disease. RNA therapeutic activity is mechanistically driven by Watson-Crick base pairing to the target gene RNA without the requirement of prior knowledge of the protein structure, function, or cellular location. However, before widespread use of RNA therapeutics becomes a reality, we must overcome a billion years of evolutionary defenses designed to keep invading RNAs from entering cells. Unlike small-molecule therapeutics that are designed to passively diffuse across the cell membrane, macromolecular RNA therapeutics are too large, too charged, and/or too hydrophilic to passively diffuse across the cellular membrane and are instead taken up into cells by endocytosis. However, similar to the cell membrane, endosomes comprise a lipid bilayer that entraps 99% or more of RNA therapeutics, even in semipermissive tissues such as the liver, central nervous system, and muscle. Consequently, before RNA therapeutics can achieve their ultimate clinical potential to treat widespread human disease, the rate-limiting delivery problem of endosomal escape must be solved in a clinically acceptable manner.


Subject(s)
COVID-19 , Lipid Bilayers , Humans , Lipid Bilayers/metabolism , COVID-19/genetics , COVID-19/therapy , Endosomes/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , RNA, Small Interfering/chemistry , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/metabolism , Oligonucleotides/metabolism
10.
Histochem Cell Biol ; 158(3): 241-251, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1858993

ABSTRACT

After their assembly by budding into the lumen of the intermediate compartment (IC) at the endoplasmic reticulum (ER)-Golgi interface, coronaviruses (CoVs) are released from their host cells following a pathway that remains poorly understood. The traditional view that CoV exit occurs via the constitutive secretory route has recently been questioned by studies suggesting that this process involves unconventional secretion. Here, using the avian infectious bronchitis virus (IBV) as a well-established model virus, we have applied confocal microscopy to investigate the pathway of CoV egress from epithelial Vero cells. We report a novel effect of IBV infection on cellular endomembranes, namely, the compaction of the pericentrosomal endocytic recycling compartment (ERC) defined by the GTPase Rab11, which coincides with the previously described Golgi fragmentation, as well as virus release. Despite Golgi disassembly, the IC elements containing the major IBV membrane protein (M)-which mostly associates with newly formed virus particles-maintain their close spatial connection with the Rab11-positive endocytic recycling system. Moreover, partial colocalization of the M protein with Rab11 was observed, whereas M displayed negligible overlap with LAMP-1, indicating that IBV egress does not occur via late endosomes or lysosomes. Synchronization of virus release using temperature-shift protocols was accompanied by increased colocalization of M and Rab11 in vesicular and vacuolar structures in the pericentrosomal region and at the cell periphery, most likely representing IBV-containing transport carriers. In conclusion, these results add CoVs to the growing list of viruses exploiting the endocytic recycling apparatus defined by Rab11 for their assembly and/or release.


Subject(s)
Coronavirus , Animals , Chlorocebus aethiops , Coronavirus/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism , Vero Cells , rab GTP-Binding Proteins/metabolism
11.
mBio ; 13(3): e0044522, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1846328

ABSTRACT

To successfully infect, viruses must respond to cues that promote their genome delivery into host cells. These keys to virus entry frequently reside inside endocytic vesicles. In a recent mBio article, Poston et al. (D. Poston, Y. Weisblum, A. Hobbs, and P. D. Bieniasz, mBio 13:e0300221, 2022, https://doi.org/10.1128/mbio.03002-21) identified and characterized protein complexes generating endocytic environments favorable for virus entry. These included retromer-associated vacuolar protein sorting 29 (VPS29) proteins. Without VPS29, endosomes lacked cathepsin activities, making them incapable of supporting those viruses in which endosomal proteolysis triggers entry. These protease-dependent viruses encompass several zoonotic filoviruses and coronaviruses, including recent SARS-CoV-2 variants of concern. The valuable findings of Poston et al. reveal retromer complexes as master keys for select endosomal virus entry processes and raise the possibility that threatening coronaviruses might be resisted through targeted inactivation of components controlling endosome structure and function.


Subject(s)
COVID-19 , Virus Internalization , Endosomes/metabolism , Humans , SARS-CoV-2
12.
Cell Signal ; 94: 110325, 2022 06.
Article in English | MEDLINE | ID: covidwho-1767965

ABSTRACT

Efforts to discover antiviral drugs and diagnostic platforms have intensified to an unprecedented level since the outbreak of COVID-19. Nano-sized endosomal vesicles called exosomes have gained considerable attention from researchers due to their role in intracellular communication to regulate the biological activity of target cells through cargo proteins, nucleic acids, and lipids. According to recent studies, exosomes play a vital role in viral diseases including covid-19, with their interaction with the host immune system opening the door to effective antiviral treatments. Utilizing the intrinsic nature of exosomes, it is imperative to elucidate how exosomes exert their effect on the immune system or boost viral infectivity. Exosome biogenesis machinery is hijacked by viruses to initiate replication, spread infection, and evade the immune response. Exosomes, however, also participate in protective mechanisms by triggering the innate immune system. Besides that, exosomes released from the cells can carry a robust amount of information about the diseased state, serving as a potential biomarker for detecting viral diseases. This review describes how exosomes increase virus infectivity, act as immunomodulators, and function as a potential drug delivery carrier and diagnostic biomarker for diseases caused by HIV, Hepatitis, Ebola, and Epstein-Barr viruses. Furthermore, the review analyzes various applications of exosomes within the context of COVID-19, including its management.


Subject(s)
COVID-19 , Exosomes , Virus Diseases , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biomarkers/metabolism , COVID-19/diagnosis , Endosomes/metabolism , Exosomes/metabolism , Humans , Virus Diseases/diagnosis , Virus Diseases/metabolism
15.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: covidwho-1621335

ABSTRACT

After binding to its cell surface receptor angiotensin converting enzyme 2 (ACE2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell through directly fusing with plasma membrane (cell surface pathway) or undergoing endocytosis traveling to lysosome/late endosome for membrane fusion (endocytic pathway). However, the endocytic entry regulation by host cell remains elusive. Recent studies show ACE2 possesses a type I PDZ binding motif (PBM) through which it could interact with a PDZ domain-containing protein such as sorting nexin 27 (SNX27). In this study, we determined the ACE2-PBM/SNX27-PDZ complex structure, and, through a series of functional analyses, we found SNX27 plays an important role in regulating the homeostasis of ACE2 receptor. More importantly, we demonstrated SNX27, together with retromer complex (the core component of the endosomal protein sorting machinery), prevents ACE2/virus complex from entering lysosome/late endosome, resulting in decreased viral entry in cells where the endocytic pathway dominates. The ACE2/virus retrieval mediated by SNX27-retromer could be considered as a countermeasure against invasion of ACE2 receptor-using SARS coronaviruses.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Endosomes/metabolism , SARS-CoV-2 , Sorting Nexins/chemistry , COVID-19/virology , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Crystallography, X-Ray , Cytosol/metabolism , Endocytosis , Gene Expression Profiling , HEK293 Cells , HeLa Cells , Homeostasis , Humans , Lentivirus , Lysosomes/metabolism , Peptides/chemistry , Protein Binding , Protein Conformation , Protein Domains , Sorting Nexins/metabolism , Virus Internalization
17.
Commun Biol ; 4(1): 1076, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1550352

ABSTRACT

Lysine-selective molecular tweezers are promising drug candidates against proteinopathies, viral infection, and bacterial biofilm. Despite demonstration of their efficacy in multiple cellular and animal models, important questions regarding their mechanism of action, including cell penetrance and intracellular distribution, have not been answered to date. The main impediment to answering these questions has been the low intrinsic fluorescence of the main compound tested to date, called CLR01. Here, we address these questions using new fluorescently labeled molecular tweezers derivatives. We show that these compounds are internalized in neurons and astrocytes, at least partially through dynamin-dependent endocytosis. In addition, we demonstrate that the molecular tweezers concentrate rapidly in acidic compartments, primarily lysosomes. Accumulation of molecular tweezers in lysosomes may occur both through the endosomal-lysosomal pathway and via the autophagy-lysosome pathway. Moreover, by visualizing colocalization of molecular tweezers, lysosomes, and tau aggregates we show that lysosomes likely are the main site for the intracellular anti-amyloid activity of molecular tweezers. These findings have important implications for the mechanism of action of molecular tweezers in vivo, explaining how administration of low doses of the compounds achieves high effective concentrations where they are needed, and supporting the development of these compounds as drugs for currently cureless proteinopathies.


Subject(s)
Astrocytes/metabolism , Bridged-Ring Compounds/metabolism , Endosomes/metabolism , Lysine/metabolism , Lysosomes/metabolism , Neurons/metabolism , Organophosphates/metabolism , Animals , Autophagy/drug effects , Cell Line, Tumor , Humans , Mice , Mice, Inbred C57BL
18.
PLoS Pathog ; 17(11): e1009820, 2021 11.
Article in English | MEDLINE | ID: covidwho-1528735

ABSTRACT

Interferons play a critical role in regulating host immune responses to SARS-CoV-2, but the interferon (IFN)-stimulated gene (ISG) effectors that inhibit SARS-CoV-2 are not well characterized. The IFN-inducible short isoform of human nuclear receptor coactivator 7 (NCOA7) inhibits endocytic virus entry, interacts with the vacuolar ATPase, and promotes endo-lysosomal vesicle acidification and lysosomal protease activity. Here, we used ectopic expression and gene knockout to demonstrate that NCOA7 inhibits infection by SARS-CoV-2 as well as by lentivirus particles pseudotyped with SARS-CoV-2 Spike in lung epithelial cells. Infection with the highly pathogenic, SARS-CoV-1 and MERS-CoV, or seasonal, HCoV-229E and HCoV-NL63, coronavirus Spike-pseudotyped viruses was also inhibited by NCOA7. Importantly, either overexpression of TMPRSS2, which promotes plasma membrane fusion versus endosomal fusion of SARS-CoV-2, or removal of Spike's polybasic furin cleavage site rendered SARS-CoV-2 less sensitive to NCOA7 restriction. Collectively, our data indicate that furin cleavage sensitizes SARS-CoV-2 Spike to the antiviral consequences of endosomal acidification by NCOA7, and suggest that the acquisition of furin cleavage may have favoured the co-option of cell surface TMPRSS proteases as a strategy to evade the suppressive effects of IFN-induced endo-lysosomal dysregulation on virus infection.


Subject(s)
COVID-19/virology , Furin/metabolism , Nuclear Receptor Coactivators/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Cell Line , Endosomes/metabolism , Furin/genetics , Gene Expression , Humans , Immune Evasion , Interferons/metabolism , Lysosomes/enzymology , Nuclear Receptor Coactivators/genetics , Protein Isoforms , Proteolysis , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Pseudotyping , Virus Internalization
19.
mBio ; 12(5): e0254221, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1462902

ABSTRACT

Damage in COVID-19 results from both the SARS-CoV-2 virus and its triggered overactive host immune responses. Therapeutic agents that focus solely on reducing viral load or hyperinflammation fail to provide satisfying outcomes in all cases. Although viral and cellular factors have been extensively profiled to identify potential anti-COVID-19 targets, new drugs with significant efficacy remain to be developed. Here, we report the potent preclinical efficacy of ALD-R491, a vimentin-targeting small molecule compound, in treating COVID-19 through its host-directed antiviral and anti-inflammatory actions. We found that by altering the physical properties of vimentin filaments, ALD-491 affected general cellular processes as well as specific cellular functions relevant to SARS-CoV-2 infection. Specifically, ALD-R491 reduced endocytosis, endosomal trafficking, and exosomal release, thus impeding the entry and egress of the virus; increased the microcidal capacity of macrophages, thus facilitating the pathogen clearance; and enhanced the activity of regulatory T cells, therefore suppressing the overactive immune responses. In cultured cells, ALD-R491 potently inhibited the SARS-CoV-2 spike protein and human ACE2-mediated pseudoviral infection. In aged mice with ongoing, productive SARS-CoV-2 infection, ALD-R491 reduced disease symptoms as well as lung damage. In rats, ALD-R491 also reduced bleomycin-induced lung injury and fibrosis. Our results indicate a unique mechanism and significant therapeutic potential for ALD-R491 against COVID-19. We anticipate that ALD-R491, an oral, fast-acting, and non-cytotoxic agent targeting the cellular protein with multipart actions, will be convenient, safe, and broadly effective, regardless of viral mutations, for patients with early- or late-stage disease, post-COVID-19 complications, and other related diseases. IMPORTANCE With the Delta variant currently fueling a resurgence of new infections in the fully vaccinated population, developing an effective therapeutic drug is especially critical and urgent in fighting COVID-19. In contrast to the many efforts to repurpose existing drugs or address only one aspect of COVID-19, we are developing a novel agent with first-in-class mechanisms of action that address both the viral infection and the overactive immune system in the pathogenesis of the disease. Unlike virus-directed therapeutics that may lose efficacy due to viral mutations, and immunosuppressants that require ideal timing to be effective, this agent, with its unique host-directed antiviral and anti-inflammatory actions, can work against all variants of the virus, be effective during all stages of the disease, and even resolve post-disease damage and complications. Further development of the compound will provide an important tool in the fight against COVID-19 and its complications, as well as future outbreaks of new viruses.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/metabolism , Organic Chemicals/therapeutic use , Spike Glycoprotein, Coronavirus/metabolism , Vimentin/metabolism , Animals , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , Exosomes/drug effects , Exosomes/metabolism , HEK293 Cells , Humans , Mice , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL